主讲课程:
操作系统原理
C语言程序设计
学术兼职:
ACM会员, 2012-
中国计算机学会会员, 2012-
IEEE 会员, 2012-
ICNC-FSKD2016, CCBD2015, CBD2015, CBD2014,等国际会议程序委员会委员
在研项目:
国家自然科学基金青年项目:动态云环境中基于SLA的工作流调度,主持, 2013年1月1日-2015年12月31日
国家自然科学基金面上项目:带装箱约束的开放多车辆调度问题的模型与算法研究,参与,2013年1月1日-2016年12月31日
国家自然科学基金青年项目:任意网络中的可分数据处理研究,参与,2016年1月1日-2018年12月31日
代表性论文:
Wei Zheng, Shouhui Huang. “An adaptive deadline constrained energy-efficient scheduling heuristic for workflows in clouds”. Concurrency and Computation: Practice and Experience, DOI: 10.1002/cpe.3592, 2015
Wei Zheng and Chen Wang, "An experimental investigation into the approximation weight function of a stochastic list scheduling algorithm", International Conference on Cloud Computing and Big Data, 2015
Wei Zheng, Bugingo Emmanuel, and Chen Wang, "A Randomized Heuristic for Stochastic Workflow Scheduling on Heterogeneous Systems", 2015 The International Conference on Advanced Cloud and Big Data, 2015
Wei Zheng, Chao Xu, and Wen Bao, "Online Scheduling of Multiple Deadline-constrained Workflow Applications in Distributed Systems", 2015 The International Conference on Advanced Cloud and Big Data, 2015
Wei Zheng,Lu Tang,Rizos Sakellariou. “A Priority-Based Scheduling Heuristic to Maximize Parallelism of Ready Tasks for DAG Applications”. In 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid 2015,2015
Wei Zheng,Shouhui Huang. “Deadline Constrained Energy-Efficient Scheduling for Workflows in Clouds”. In the Second International Conference on Advanced Cloud and Big Data, 2014
Wei Zheng,Pengji Zhou. “An Efficient Bi-objective Particle Swarm Optimization algorithm for scheduling workflows on heterogeneous dynamic voltage scaling enabled processors”. In 2014 10th International Conference on Natural Computation (ICNC),2014
Wei Zheng,Rizos Sakellariou. “Stochastic DAG scheduling using a Monte Carlo Approach”, Journal of Parallel and Distributed Computing,2013,73(12):1673-1689
Wei Zheng,Rizos Sakellariou. “Budget-Deadline Constrained Workflow Planning for Admission Control”, Journal of Grid Computing,2013,11(4):633-651